Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels.

نویسندگان

  • Ilari Filpponen
  • Dimitris S Argyropoulos
چکیده

Over a number of years work in our laboratory has been developing new chemistry for the use of cellulose nanocrystals (CNCs) as scaffolds for the creation of nanomaterials with novel, stimuli responsive characteristics. Our work takes advantage of the rigid nature of CNCs, the unique nanopattern etched on their surface in the form of regularly spaced primary OH groups, and the fact that these materials have all reducing end groups located on one end. In this communication, a method for the grafting of amine-terminated monomers onto surface-modified CNCs followed by click chemistry is demonstrated. Initially the primary hydroxyl groups on the surface of the CNCs were selectively activated by converting them to carboxylic acids by the use of TEMPO-mediated hypohalite oxidation. Further reactions using the activated TEMPO-oxidized CNCs were carried out via carbodiimide-mediated formation of an amide linkage between precursors carrying an amine functionality and the carboxylic acid groups on the surface of the TEMPO-oxidized CNCs. Subsequently, two sets of CNCs were prepared, containing on their surface an azide derivative and an alkyne derivative, respectively. Finally, the click chemistry reaction, that is, the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition between the azide and the alkyne, surface-activated CNC was employed, bringing together the nanocrystalline materials in a unique regularly packed arrangement demonstrating a degree of molecular control for creating these structures at the nano level.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoresponsive Cellulose Nanocrystals

In this communication a method for the creation of fluorescent cellulose nanoparticles using click chemistry and subsequent photodimerization of the installed side‐ chains is demonstrated. In the first step, the primary hydroxyl groups on the surface of the CNCs were converted to carboxylic acids by using TEMPO‐mediated hypohalite oxidation. The alkyne groups, essent...

متن کامل

One Pot Synthesis of Highly Functionalized Tetrahydropyridines Using Nano-TiCl2/cellulose as Biodegradable and Eco-Friendly Catalyst

TiCl4/nano-cellulose as a biodegradable and eco-friendly Lewis acid catalyst was synthesized via reaction of nano-cellulose and TiCl4. This catalyst was characterized and used for synthesis of asymmetric highly functionalized tetrahydropyridines via a five-component condensation reaction of p-substituted anilines, aldehydes and ethyl acetoacetate under solvent-free condition. Simple methodology...

متن کامل

Preparation, characterization and Photo-inactivation of cellulose nanocrystals impregnated with meso-tetrakis(4-nitrophenyl)porphyrin

In this study, cellulose nanocrystals (CNC) was prepared and meso-tetrakis(4-nitrophenyl)porphyrin (TNPP) was immobilized on it. The product was identified by techniques of UV-Vis, fourier transform infrared (FT-IR), diffuse reflectance UV-Vis spectroscopy (DRS), energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The effect of an amount of a loaded porphyrin comp...

متن کامل

Nano-BF3/cellulose as a biodegradable novel catalyst for synthesis of highly functionalized tetrahydropyridines

Nano-cellulose with high amount of free OH groups could be used as supporting agents for boron trifluoride (BF3). Nano-BF3/cellulose is a solid acid and a biodegradable catalyst which was prepared via reaction of nano-cellulose and BF3. The structure of this catalyst was studied by FT-IR, FESEM, TEM, XRD, EDS, TGA, XRF and BET. In this research, the synthesis of...

متن کامل

Novel and cost-effective biocatalyst consisting of nanofibrillated cellulose and TiCl3 for the synthesis of 2,3'-dihydroquinazolin-4-(1H)-ones

A novel and cost-effective catalyst for synthesis of 2,3'-dihydroquinazolin-4-(1H)-ones was developed utilizing a combined nanocomposite obtained from bonding TiCl3 to hydroxyl groups of nanofibrillated cellulose as a green and inexpensive support.The structure of the catalyst was investigated using the Fourier transform infrared spectroscopy (FT-IR), field emission scanning...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomacromolecules

دوره 11 4  شماره 

صفحات  -

تاریخ انتشار 2010